<--- Back to Details
First PageDocument Content
Machine learning / Computational linguistics / Digital signal processing / Natural language processing / Boosting / Ensemble learning / Test set / Active learning / Oversampling / Sampling / Word-sense disambiguation / Named-entity recognition
Date: 2016-05-02 07:04:12
Machine learning
Computational linguistics
Digital signal processing
Natural language processing
Boosting
Ensemble learning
Test set
Active learning
Oversampling
Sampling
Word-sense disambiguation
Named-entity recognition

Natural Language Engineering http://journals.cambridge.org/NLE Additional services for Natural Language Engineering: Email alerts: Click here Subscriptions: Click here Commercial reprints: Click here

Add to Reading List

Source URL: www.di.fc.ul.pt

Download Document from Source Website

File Size: 654,59 KB

Share Document on Facebook

Similar Documents

Ensemble Learning or Deep Learning? Application to Default Risk Analysis Shigeyuki Hamori Minami Kawai Takahiro Kume Yuji Murakami

DocID: 1vihG - View Document

Ensemble Learning for Visual Recognition PhD Defence Mohammad Ali Bagheri Supervisor: Dr. Qigang Gao

DocID: 1vbOa - View Document

Predictive Analytics Using Statistical, Learning, and Ensemble Methods to Support Real-Time Exploration of Discrete Event Simulations Walid Budgagaa , Matthew Malenseka , Sangmi Pallickaraa , Neil Harveyb , F. Jay Breidt

DocID: 1uyb6 - View Document

Pycobra: A Python Toolbox for Ensemble Learning and Visualisation Benjamin Guedj

DocID: 1tKcN - View Document

Ensemble Methods: Bagging and Boosting Piyush Rai Machine Learning (CS771A) Oct 26, 2016 Machine Learning (CS771A)

DocID: 1tqAV - View Document