<--- Back to Details
First PageDocument Content
Dynamic programming / Model theory / Markov processes / Stochastic control / Boolean algebra / Markov decision process / Reinforcement learning / Function / Propositional variable / Mathematics / Statistics / Logic
Date: 2008-03-25 22:30:40
Dynamic programming
Model theory
Markov processes
Stochastic control
Boolean algebra
Markov decision process
Reinforcement learning
Function
Propositional variable
Mathematics
Statistics
Logic

Journal of Artificial Intelligence Research[removed]472 Submitted[removed]; published[removed]

Add to Reading List

Source URL: www.cs.tufts.edu

Download Document from Source Website

File Size: 421,93 KB

Share Document on Facebook

Similar Documents

Algebra Universalis, + 0.20/0 (~ 1995 BirkhS.user Verlag, Basel Adjoining units to residuated Boolean algebras

DocID: 1v8wA - View Document

American Computer Science League Flyer Solutions 1. Boolean Algebra ( A  B) ( AB  BC ) = A B ( AB  BC ) = AA B  A BB C  0  0  0

DocID: 1uZJ8 - View Document

Visualising the Boolean Algebra IB4 in 3D Hans Smessaert & Lorenz Demey KU Leuven, Belgium Rhombic Dodecahedron (RDH) LOGICAL GEOMETRY

DocID: 1up5i - View Document

BOO axioms BOO001-0.ax Ternary Boolean algebra (equality) axioms m(m(v, w, x), y, m(v, w, z)) = m(v, w, m(x, y, z)) cnf(associativity, axiom) m(y, x, x) = x cnf(ternary multiply1 , axiom)

DocID: 1u9q0 - View Document

Theoretical computer science / Mathematics / Computational complexity theory / Operations research / Logic in computer science / Mathematical optimization / NP-complete problems / Boolean algebra / Maximum satisfiability problem / Boolean satisfiability problem / Constraint satisfaction / Solver

On Solving Boolean Multilevel Optimization Problems∗ Josep Argelich INESC-ID Lisbon

DocID: 1rsZm - View Document