<--- Back to Details
First PageDocument Content
Triangle / Hyperbolic triangle / Horocycle / Gauss–Bonnet theorem / Geodesic / Circle / Beltrami–Klein model / Sphere / Quadrilateral / Geometry / Hyperbolic geometry / Ideal triangle
Date: 2012-09-24 00:27:43
Triangle
Hyperbolic triangle
Horocycle
Gauss–Bonnet theorem
Geodesic
Circle
Beltrami–Klein model
Sphere
Quadrilateral
Geometry
Hyperbolic geometry
Ideal triangle

Add to Reading List

Source URL: math.berkeley.edu

Download Document from Source Website

File Size: 2,09 MB

Share Document on Facebook

Similar Documents

3-manifold / The Geometry Center / Beltrami–Klein model / Icosahedron / Visualization / Hyperbolic space / Tree / Hyperbolic manifold / Hyperbolic tree / Geometry / Hyperbolic geometry / Topology

Visualizing the Structure of the World Wide Web in 3D Hyperbolic Space Tamara Munzner ∗ The Geometry Center, University of Minnesota † Paul Burchard ‡ Department of Mathematics, University of Utah §

DocID: 13wR8 - View Document

Hyperbolic tree / Beltrami–Klein model / Hyperbolic / Non-Euclidean geometry / Unit disk / Radial tree / SpicyNodes / Geometry / Hyperbolic geometry / Graph drawing

A Focus+Context Technique Based on Hyperbolic Geometry for Visualizing Large Hierarchies. John Lamping, Ramana Rao, and Peter Pirolli Xerox Palo Alto Research Center

DocID: WYzp - View Document

Axiom / Poincaré disk model / Mathematics / Model theory / Hyperbolic space / Geometry / Hyperbolic geometry / Beltrami–Klein model

Math_CS_Newsletter_2011-12

DocID: N3LH - View Document

Differential geometry / Surfaces / Differential geometers / Beltrami–Klein model / Non-Euclidean geometry / Differential geometry of surfaces / Hyperbolic space / Poincaré metric / Projective geometry / Geometry / Hyperbolic geometry / Homogeneous spaces

On Hilbert’s fourth problem arXiv:1312.3172v1 [math.HO] 11 Dec 2013

DocID: 4ooc - View Document

Parallel / Poincaré disk model / Euclidean geometry / Space / Tessellation / Ideal triangle / Nikolai Lobachevsky / Non-Euclidean geometry / Beltrami–Klein model / Geometry / Hyperbolic geometry / Hyperbolic space

Exploring Hyperbolic Space adapted from The Institute for Figuring: http://theiff.org/oexhibits/ In 1997 Cornell University mathematician Daina Taimina finally worked out how to make a

DocID: 2KsL - View Document