<--- Back to Details
First PageDocument Content
Computer arithmetic / Computing / Mathematics / Double-precision floating-point format / Q / Exponentiation / Denormal number / NaN / IEEE 754-1985 / Single-precision floating-point format
Date: 2015-12-02 11:24:11
Computer arithmetic
Computing
Mathematics
Double-precision floating-point format
Q
Exponentiation
Denormal number
NaN
IEEE 754-1985
Single-precision floating-point format

Denison University Floa.ng Point
 
 CS-281: Introduc.on to Computer Systems

Add to Reading List

Source URL: personal.denison.edu

Download Document from Source Website

File Size: 261,29 KB

Share Document on Facebook

Similar Documents

Computer arithmetic / Computer architecture / Mathematics / Computing / Rounding / Fixed-point arithmetic / Audio bit depth / IEEE floating point / Q / C++ classes / Floor and ceiling functions / Double-precision floating-point format

FAST ROUNDING OF FLOATING POINT NUMBERS

DocID: 1rtx5 - View Document

Computer architecture / Computing / Computer arithmetic / Computer engineering / Extended precision / Long double / Processor register / X87 / 64-bit computing / Double-precision floating-point format / X86 / IEEE floating point

CS:APP Web Aside DATA:IA32-FP: Intel IA32 Floating-Point Arithmetic∗ Randal E. Bryant David R. O’Hallaron June 5, 2012

DocID: 1rpCG - View Document

Computer arithmetic / Mathematics / Arithmetic / Mathematical analysis / IEEE 754-1985 / Single-precision floating-point format / Double-precision floating-point format / Denormal number / Rounding / Pi / Precision / Approximations of

Lineare Algebra Endliche Arithmetik Walter Gander ETH Z¨ urich

DocID: 1rfwa - View Document

Computer arithmetic / Computing / Mathematics / Mathematical analysis / Normal number / IEEE floating point / Decimal64 floating-point format / Double-precision floating-point format / Decimal128 floating-point format / Decimal32 floating-point format / Rounding / Exponential function

Worst Cases for the Exponential Function in the IEEE 754r decimal64 Format Vincent Lefèvre, Damien Stehlé, Paul Zimmermann LORIA / INRIA Lorraine JNAO 2006

DocID: 1reF1 - View Document

Computer arithmetic / Computing / Mathematics / Computer architecture / Rounding / GNU MPFR / Double-precision floating-point format / IEEE floating point / Significant figures / Sine / C99 / Roundedness

Hardest-to-Round Cases – Part 2 Vincent LEFÈVRE AriC, INRIA Grenoble – Rhône-Alpes / LIP, ENS-Lyon Journées TaMaDi, Lyon,

DocID: 1rccC - View Document