<--- Back to Details
First PageDocument Content
Mathematical series / Integer sequences / Summability methods / Complex analysis / Bernoulli number / Euler–Maclaurin formula / Leonhard Euler / Summation / Series / Mathematical analysis / Mathematics / Number theory
Date: 2002-10-29 11:38:49
Mathematical series
Integer sequences
Summability methods
Complex analysis
Bernoulli number
Euler–Maclaurin formula
Leonhard Euler
Summation
Series
Mathematical analysis
Mathematics
Number theory

Add to Reading List

Source URL: www.math.nmsu.edu

Download Document from Source Website

File Size: 154,50 KB

Share Document on Facebook

Similar Documents

Quantum field theory / Number theory / Asymptotic analysis / Mathematical series / Zeta function regularization / Riemann zeta function / Bernoulli polynomials / Euler–Maclaurin formula / Bernoulli number / Mathematical analysis / Mathematics / Summability methods

A NEW APPROACH TO THE RENORMALIZATION OF UV DIVERGENCES USING ZETA REGULARIZATION TECHNIQUES Jose Javier Garcia Moreta Graduate student of Physics at the UPV/EHU (University of Basque country) In Solid State Physics Addr

DocID: 15oIj - View Document

Summability methods / Integer sequences / Mathematical series / Bernoulli polynomials / Euler–Maclaurin formula / Bernoulli number / Euler summation / Summation / Polynomial / Mathematical analysis / Mathematics / Number theory

Mathematical Notes, vol. 71, no. 6, 2002, pp. 851–856. Translated from Matematicheskie Zametki, vol. 71, no. 6, 2002, pp. 931–936. c Original Russian Text Copyright 2002 by A. V. Ustinov.

DocID: 11PhS - View Document

Bernoulli polynomials / Polynomials / Summation / Euler–Maclaurin formula / Normal distribution / Itō diffusion / Mathematical analysis / Mathematics / Number theory

109 VOL. 74, NO. 2, APRIL 2001 The Euler–Maclaurin and Taylor Formulas: Twin, Elementary Derivations

DocID: RZwT - View Document

Meromorphic functions / Joseph Fourier / Fourier analysis / Riemann zeta function / Fourier transform / Gamma function / Fourier series / Algebraic number field / Euler–Maclaurin formula / Mathematical analysis / Mathematics / Analytic number theory

Math 259: Introduction to Analytic Number Theory The Riemann zeta function and its functional equation (and a review of the Gamma function and Poisson summation) Recall Euler’s identity: [ζ(s) :=]

DocID: Nx2E - View Document

Integer sequences / Summability methods / Bernoulli polynomials / Polynomials / Bernoulli number / Euler–Maclaurin formula / Binomial coefficient / Summation / Euler summation / Mathematics / Mathematical analysis / Number theory

4 Euler-Maclaurin Summation Formula 4.1 Bernoulli Number & Bernoulli Polynomial[removed]Definition of Bernoulli Number Bernoulli numbers Bk (k =1, 2, 3, ) are defined as coefficients of the following equation.

DocID: 8J6h - View Document