<--- Back to Details
First PageDocument Content
Combinatorics / Jackson integral / Q-derivative / Mock modular form / Basic hypergeometric series / Mathematics / Q-analogs / Mathematical analysis
Date: 2004-12-06 07:07:29
Combinatorics
Jackson integral
Q-derivative
Mock modular form
Basic hypergeometric series
Mathematics
Q-analogs
Mathematical analysis

Add to Reading List

Source URL: staff.www.ltu.se

Download Document from Source Website

File Size: 161,74 KB

Share Document on Facebook

Similar Documents

Jasper V. Stokman* (), Korteweg-de Vries Institute for Mathematics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands. Jackson integral solutions of reflection quant

DocID: 1m9Ny - View Document

Fourier analysis / Laplace transform / Transforms / ALGOL 68 / Four-square cipher / Obfuscated code / Mathematical analysis / Integral transforms / Programming language theory

Unifying Execution of Imperative and Declarative Code Aleksandar Milicevic, Derek Rayside, Kuat Yessenov, Daniel Jackson Computer Science and Artificial Intelligence Laboratory Massachusetts Institute of Technology {ale

DocID: 18Vyp - View Document

Protein domains / Signal transduction / Integral membrane proteins / Protein families / Tubby protein / Intraflagellar transport / Cilium / G protein-coupled receptor / Bardet–Biedl syndrome / Biology / Cell biology / Peripheral membrane proteins

Mukhopadhyay and Jackson Genome Biology 2011, 12:225 http://genomebiology.comP R OT E I N FA M I LY R E V I E W The tubby family proteins

DocID: 18oD1 - View Document

Symplectic topology / Abstract algebra / Differential topology / Complex manifolds / Gromov–Witten invariant / Integral / Genus of a multiplicative sequence / ELSV formula / Mathematical analysis / Algebraic geometry / String theory

THE GROMOV-WITTEN POTENTIAL OF A POINT, HURWITZ NUMBERS, AND HODGE INTEGRALS I.P. GOULDEN, D.M. JACKSON, AND R. VAKIL Contents 1. Introduction

DocID: 10RhY - View Document

Geometry / Logarithm / Conformal map / Mathematics / Mathematical analysis / Integral

Problem Set 3 Particles and Fields II Winter, ‘14 Due: February 6, 2014 Problem 1: Jackson 1.22 Problem 2: Jackson 1.23

DocID: 10Gz6 - View Document