<--- Back to Details
First PageDocument Content
Quantum mechanics / Particle physics / BRST quantization / Gauge theory / Canonical quantization / Matrix / Operator / Trace / Spinor / Physics / Quantum field theory / Theoretical physics
Date: 2008-02-01 01:18:56
Quantum mechanics
Particle physics
BRST quantization
Gauge theory
Canonical quantization
Matrix
Operator
Trace
Spinor
Physics
Quantum field theory
Theoretical physics

Add to Reading List

Source URL: arxiv.org

Download Document from Source Website

File Size: 213,72 KB

Share Document on Facebook

Similar Documents

Week 4 (due Feb. 5) Reading: Srednicki, sections 41,a) Consider the theory of a single free Weyl fermion field with zero mass m = 0. Perform the canonical quantization of the theory: write down the commutation re

DocID: 1u4Mp - View Document

Theoretical physics / Physics / Quantum mechanics / Philosophy of physics / Mathematical physics / Operator theory / Symplectic geometry / WignerWeyl transform / Geometric quantization / Canonical commutation relation / Poisson bracket / Quantization

Methods of Quantization - Part 1 Elisa Ercolessi September 3-5, 2014 THE ORIGIN OF QUANTIZATION RULES

DocID: 1rbNa - View Document

Canonical quantization of non-commutative holonomies in 2+1 loop quantum gravity Université de Provence, Aix-Marseille I “Centre de Physique Théorique”

DocID: 1bBWK - View Document

Quantum mechanics / Renormalization group / Statistical mechanics / Renormalization / Path integral formulation / Quantization / Quantum gravity / Introduction to quantum mechanics / Canonical quantization / Physics / Quantum field theory / Mathematical physics

Short Description of One Year QFT course at IPM Quantum Field Theory (QFT) is the natural and the only consistent description of relativistic quantum mechanics. As such the background knowledge for QFT includes special r

DocID: 1asEU - View Document

Quantum field theory / Creation and annihilation operators / Heisenberg group / Werner Heisenberg / Canonical commutation relation / Matrix mechanics / Canonical quantization / Physics / Quantum mechanics / Mathematical physics

Spans and the Categorified Heisenberg Algebra – 1 John Baez for more, see: http://math.ucr.edu/home/baez/spans/

DocID: 13nvW - View Document