<--- Back to Details
First PageDocument Content
Axioms of set theory / Z notation / Urelements / Zermelo–Fraenkel set theory / S / Constructible universe / Zermelo set theory / Naive set theory / Axiom of empty set / Mathematical logic / Set theory / Mathematics
Date: 2014-01-14 06:12:05
Axioms of set theory
Z notation
Urelements
Zermelo–Fraenkel set theory
S
Constructible universe
Zermelo set theory
Naive set theory
Axiom of empty set
Mathematical logic
Set theory
Mathematics

Basic set theory Richard Pettigrew January 26, 2012 1

Add to Reading List

Source URL: www.mcmp.philosophie.uni-muenchen.de

Download Document from Source Website

File Size: 165,58 KB

Share Document on Facebook

Similar Documents

Axioms of set theory / Z notation / Urelements / Zermelo–Fraenkel set theory / S / Constructible universe / Zermelo set theory / Naive set theory / Axiom of empty set / Mathematical logic / Set theory / Mathematics

Basic set theory Richard Pettigrew January 26, 2012 1

DocID: Qu0M - View Document

Computability theory / Complexity classes / Urelements / Z notation / S / Naive set theory / Constructible universe / Arithmetical hierarchy / Axiom of extensionality / Mathematical logic / Mathematics / Set theory

THE ITERATIVE CONCEPTION OF SET

DocID: OCnw - View Document

Axioms of set theory / Z notation / Urelements / Zermelo–Fraenkel set theory / Constructible universe / Axiom of choice / First-order logic / Axiom / Function / Mathematical logic / Logic / Mathematics

A New System of Axioms Instead of ZF (ver[removed]Use a Latin font such as Times New Roman, please.] [If not word-wrapped, see "Word-wrap" of HELP in your software.]

DocID: 5yHq - View Document

Axioms of set theory / Z notation / Urelements / Self-reference / Zermelo–Fraenkel set theory / S / Axiom of choice / New Foundations / Axiom of regularity / Mathematical logic / Set theory / Mathematics

Nonstandard Set Theories and Information Management VAROL AKMAN

DocID: 3WfL - View Document

Urelements / Z notation / New Foundations / Type theory / Willard Van Orman Quine / Zermelo–Fraenkel set theory / Axiom of choice / Zermelo set theory / S / Mathematical logic / Set theory / Mathematics

Proof, Sets, and Logic M. Randall Holmes November 30, 2012

DocID: 2Krn - View Document