<--- Back to Details
First PageDocument Content
Formal methods / Logical syntax / Formal languages / Metamath / Set theory / Automated proof checking / Axiom / Automated theorem proving / First-order logic / Logic / Mathematics / Mathematical logic
Date: 2013-09-22 22:46:06
Formal methods
Logical syntax
Formal languages
Metamath
Set theory
Automated proof checking
Axiom
Automated theorem proving
First-order logic
Logic
Mathematics
Mathematical logic

Add to Reading List

Source URL: us.metamath.org

Download Document from Source Website

File Size: 1,39 MB

Share Document on Facebook

Similar Documents

Software engineering / Formal methods / Theoretical computer science / Automated theorem proving / Computing / Loop invariant / Mathematical proof / Rippling / Extended static checking / Recurrence relation / Automated reasoning / Invariant

Automation for Exception Freedom Proofs Bill J. Ellis and Andrew Ireland School of Mathematical & Computer Sciences Heriot-Watt University Edinburgh, Scotland, UK

DocID: 1q2ho - View Document

Logic / Formal methods / Theoretical computer science / Automated theorem proving / Mathematical logic / Logic in computer science / Proof assistants / Formal verification / Formal proof / Proof-carrying code / Automated proof checking / Theorem

Practical Proof Checking for Program Certification Geoff Sutcliffe1 , Ewen Denney2 , Bernd Fischer2 1 University of Miami

DocID: 1pZLM - View Document

Predicate logic / Proof assistants / Mizar system / Andrzej Trybulec / Formal methods / First-order logic / TarskiGrothendieck set theory / Constructible universe / Mizar / Automated proof checking / Quantifier

Mizar Hands-on Tutorial Adam Naumowicz Artur Kornilowicz Adam Grabowski

DocID: 1oSlz - View Document

Automated theorem proving / Logic / Theoretical computer science / Mathematical logic / Isabelle / IsaPlanner / Proof assistant / Mathematical proof / Automated proof checking / Rippling / Theorem / Proof

A Proof-Centric approach to Mathematical Assistants Lucas Dixon and Jacques Fleuriot School of Informatics, University of Edinburgh, Appleton Tower, Crighton Street, Edinburgh, EH8 9LE, UK

DocID: 1lo04 - View Document

Functional languages / Type theory / Automated theorem proving / Hybrid automaton / Numerical analysis / Proof assistant / Coq / Verification / OCaml / Model checking / Discretization

Verification of Hybrid Systems in Coq H. Geuvers, A. Koprowski, D. Synek, E. van der Weegen BRICKS AFM4 Advancing the Real use of Proof Assistants Foundations group, Intelligent Systems, ICIS Radboud University Nijmegen

DocID: 1kJ7K - View Document