<--- Back to Details
First PageDocument Content
Box–Jenkins / Autoregressive integrated moving average / Moving-average model / Autocorrelation / Seasonality / Forecasting / Time series / Autoregressive model / Regression analysis / Statistics / Time series analysis / Partial autocorrelation function
Date: 2014-11-29 15:39:14
Box–Jenkins
Autoregressive integrated moving average
Moving-average model
Autocorrelation
Seasonality
Forecasting
Time series
Autoregressive model
Regression analysis
Statistics
Time series analysis
Partial autocorrelation function

Microsoft PowerPoint - Slides_on_ARIMA_models--Robert_Nau.pptx

Add to Reading List

Source URL: people.duke.edu

Download Document from Source Website

File Size: 550,61 KB

Share Document on Facebook

Similar Documents

Biol. Cybern. 83, 35±Short-window spectral analysis of cortical event-related potentials by adaptive multivariate autoregressive modeling: data preprocessing, model validation, and variability assessment Ming

DocID: 1v0j0 - View Document

Time series analysis / Statistics / Time series models / Autoregressive conditional heteroskedasticity / Noise / CUSUM / Time series / Autoregressive conditional duration / Economic model / Autoregressive model / Parameter / ACD

Ann Inst Stat Math:621–637 DOIs10463x Parameter change test for autoregressive conditional duration models Sangyeol Lee1 · Haejune Oh1

DocID: 1rjRw - View Document

Mathematical analysis / Signal processing / Mathematics / Analysis / Time series analysis / Estimation theory / Numerical analysis / Mathematical optimization / Levinson recursion / Linear prediction / Fourier transform / Autoregressive model

A Fast Implementation of Burg’s Method Koen Vos August, 2013 Abstract

DocID: 1rfWE - View Document

Statistics / Control theory / Signal processing / Time series models / Engineering / Statistical theory / Estimation theory / Data assimilation / Weather forecasting / Autoregressive integrated moving average / Mathematical optimization / Autoregressive model

Nonlinear Processes in Geophysics, 12, 515–525, 2005 SRef-ID: npgEuropean Geosciences Union © 2005 Author(s). This work is licensed under a Creative Commons License.

DocID: 1rftO - View Document

Statistics / Signal processing / Estimation theory / Meteorology / Precipitation / Snow / Water ice / Regression analysis / Lidar / Autoregressive model / Water

Understanding spatial nonstationarity in the influence of topography and vegetation on patterns of snow depth and snow water equivalent (SWE) can improve distributed SWE models, improve river runoff forecasts, and guide

DocID: 1rfsO - View Document