<--- Back to Details
First PageDocument Content
Mathematical series / Ordinary differential equations / Asymptotology / Asymptotic expansion / Big O notation / Lambert W function / Taylor series / Lyapunov stability / Asymptote / Mathematical analysis / Mathematics / Asymptotic analysis
Date: 2014-02-21 07:13:58
Mathematical series
Ordinary differential equations
Asymptotology
Asymptotic expansion
Big O notation
Lambert W function
Taylor series
Lyapunov stability
Asymptote
Mathematical analysis
Mathematics
Asymptotic analysis

1 AL Asymptotic Approaches CO

Add to Reading List

Source URL: media.wiley.com

Download Document from Source Website

File Size: 1,56 MB

Share Document on Facebook

Similar Documents

Lyapunov-Based Controller Synthesis and Stability Analysis for the Execution of High-Speed Multi-Flip Quadrotor Maneuvers Ying Chen and N´estor O. P´erez-Arancibia Abstract— We present a method for the synthesis and

DocID: 1vqS8 - View Document

Nonlinear Control Theory 2017 L1 Nonlinear phenomena and Lyapunov theory L2 Absolute stability theory, dissipativity and IQCs L3 Density functions and computational methods L4 Piecewise linear systems, jump linear system

DocID: 1tW3L - View Document

Lyapunov-Krasovskii functionals for the study of stability and stabilisation of time-delay systems with application to networked control systems University of Sevilla (SPAIN) ´

DocID: 1tULC - View Document

Web of Science 自我引用查詢方式   1. 例如要找 Chiang WL  部長在這篇文獻” Fuzzy Lyapunov method for stability conditions of nonlinear systems”  的自我引用次數 

DocID: 1rxW3 - View Document

Mathematical analysis / Mathematics / Calculus / Ordinary differential equations / Asymptotic analysis / Multivariable calculus / Partial differential equation / Lyapunov stability / Stability theory / Perturbation theory / Equation / Mathieu function

Special Sessions Special Session 1: Qualitative Studies of PDEs: Entire Solutions and Asymptotic Behavior Peter Polacik, University of Minnesota, USA Eiji Yanagida, Tokyo Institute of Technology, Japan The aim of this se

DocID: 1riz8 - View Document