<--- Back to Details
First PageDocument Content
Complexity classes / NP-complete problems / Closest string / Parameterized complexity / Clique problem / Vertex cover / Polynomial-time approximation scheme / String / Approximation algorithm / Theoretical computer science / Computational complexity theory / Applied mathematics
Date: 2007-02-16 07:21:01
Complexity classes
NP-complete problems
Closest string
Parameterized complexity
Clique problem
Vertex cover
Polynomial-time approximation scheme
String
Approximation algorithm
Theoretical computer science
Computational complexity theory
Applied mathematics

Add to Reading List

Source URL: theinf1.informatik.uni-jena.de

Download Document from Source Website

File Size: 226,76 KB

Share Document on Facebook

Similar Documents

Proof, beliefs, and algorithms through the lens of sum-of-squares 1 An integrality gap for the planted clique problem The Planted Clique problem (sometimes referred to as the hidden clique

DocID: 1sYyH - View Document

Computational complexity theory / Theory of computation / Complexity classes / NP / Clique problem / Linear programming / P / Algorithm / Time complexity / Optimization problem / Book:Graph Theory / P versus NP problem

CS364A: Algorithmic Game Theory Lecture #20: Mixed Nash Equilibria and PPAD-Completeness∗ Tim Roughgarden† December 4, 2013 Today we continue our study of the limitations of learning dynamics and polynomial-time

DocID: 1rfbK - View Document

Graph theory / Mathematics / Discrete mathematics / Graph / Line graph / Clique / Vertex / Modularity / Centrality / Distance / Complete graph / Connectivity

Inference, Models and Simulation for Complex Systems CSCI, Fall 2011 Prof. Aaron Clauset Problem Set 4, dueFor some of these problems, you will likely need to refer to our networks text Networks: An

DocID: 1qToH - View Document

Graph theory / Mathematics / NP-complete problems / Combinatorial optimization / Graph connectivity / Graph coloring / Graph / Matching / Triadic closure / Clique problem / Vertex cover / Clique

Using Strong Triadic Closure to Characterize Ties in Social Networks Stavros Sintos Panayiotis Tsaparas

DocID: 1qqrE - View Document

Mathematical optimization / Numerical analysis / Mathematical analysis / Linear programming / Convex optimization / Interior point method / Quadratic programming / Global optimization / Robert J. Vanderbei / Quasi-Newton method / Nonlinear programming / Linear matrix inequality

Literaturverzeichnis 1. Alizadeh, F): A sublinear-time randomized parallel algorithm for the maximum clique problem in perfect graphs. Proceedings of the second ACMSIAM Symposium on Discrete Algorithms 2. Alizade

DocID: 1qhO6 - View Document