<--- Back to Details
First PageDocument Content
Lie groups / Quantum field theory / Symplectic geometry / Angular momentum / Lie algebra / Spin / Poisson bracket / Canonical commutation relation / Weyl quantization / Physics / Rotational symmetry / Quantum mechanics
Date: 2010-01-14 12:38:17
Lie groups
Quantum field theory
Symplectic geometry
Angular momentum
Lie algebra
Spin
Poisson bracket
Canonical commutation relation
Weyl quantization
Physics
Rotational symmetry
Quantum mechanics

BOOK REVIEWS 150

Add to Reading List

Source URL: www.ams.org

Download Document from Source Website

File Size: 282,32 KB

Share Document on Facebook

Similar Documents

Week 4 (due Feb. 5) Reading: Srednicki, sections 41,a) Consider the theory of a single free Weyl fermion field with zero mass m = 0. Perform the canonical quantization of the theory: write down the commutation re

DocID: 1u4Mp - View Document

Symplectic geometry / Mathematical physics / Weyl quantization / Poisson manifold / Poisson bracket / Orbifold / Constitutive equation / Physics / Differential topology / Theoretical physics

NONASSOCIATIVE QUANTUM MECHANICS Richard Szab´ o with Dionysios Mylonas and Peter Schupp

DocID: 1fw75 - View Document

Quantization of massive Weyl fields in vacuum Maxim Dvornikova,b∗ a b

DocID: 1dEee - View Document

Mathematical physics / Conservation laws / Quantum field theory / Quantization / Flavour / Symmetry / Weyl quantization / Quantum gravity / Gauge theory / Physics / Quantum mechanics / Theoretical physics

Tohoku Forum for Creativity Thematic Program 2015 Fundamental Problems in Quantum Physics: Strings, Black Holes and Quantum Information Seminar "The unreasonable effectiveness of mathematical deformation theory in physic

DocID: 18Ndx - View Document

Lie groups / Mathematical physics / Integral transforms / Joseph Fourier / Fourier analysis / Fourier transform / Exponential map / Weyl quantization / Representation theory / Physics / Mathematical analysis / Theoretical physics

Affiche-annonce SPINNLER Florian

DocID: 16Pll - View Document