<--- Back to Details
First PageDocument Content
Probability and statistics / Statistics / Statistical randomness / Stochastic computing / Applied mathematics / Stochastic optimization / Artificial neural network / Mathematical optimization / Stochastic process
Date: 2018-10-11 21:16:46
Probability and statistics
Statistics
Statistical randomness
Stochastic computing
Applied mathematics
Stochastic optimization
Artificial neural network
Mathematical optimization
Stochastic process

Stochastic Synthesis for Stochastic Computing Vincent T. Lee, Armin Alaghi, Luis Ceze, Mark Oskin University of Washington arXiv:1810.04756v1 [cs.ET] 10 Oct 2018

Add to Reading List

Source URL: arxiv.org

Download Document from Source Website

File Size: 4,66 MB

Share Document on Facebook

Similar Documents

Numerical analysis / Dynamical systems / Classical mechanics / Hamiltonian mechanics / Symplectic integrator / Mathematical optimization / Gradient descent / Leapfrog integration / Bregman Lagrangian / Lagrangian mechanics / Bregman divergence

Dynamical, Symplectic and Stochastic Perspectives on Gradient-Based Optimization Michael I. Jordan University of California, Berkeley March 3, 2018

DocID: 1xVqC - View Document

ECEFallSyllabus Robust and Stochastic Optimization

DocID: 1vpB0 - View Document

EE266 and MS&E251: Introduction About the course Optimization Dynamical systems Stochastic control

DocID: 1vkoK - View Document

Stochastic Maximum Likelihood Optimization via Hypernetworks Abdul-Saboor Sheikh, Kashif Rasul, Andreas Merentitis & Urs Bergmann {saboor.sheikh, kashif.rasul, urs.bergmann}@zalando.de

DocID: 1vg3V - View Document

Scenario generation for stochastic optimization problems via the sparse grid method ∗ Michael Chen† Sanjay Mehrotra‡

DocID: 1vfTO - View Document