<--- Back to Details
First PageDocument Content
Modular forms / Automorphic forms / Analytic number theory / Number theory / Fractals / Eisenstein series / Cusp form / Representation theory / Hecke operator / Mathematical analysis / Abstract algebra / Mathematics
Date: 2001-05-12 20:19:20
Modular forms
Automorphic forms
Analytic number theory
Number theory
Fractals
Eisenstein series
Cusp form
Representation theory
Hecke operator
Mathematical analysis
Abstract algebra
Mathematics

Add to Reading List

Source URL: www.sunsite.ubc.ca

Download Document from Source Website

File Size: 177,64 KB

Share Document on Facebook

Similar Documents

Substitutions, Rauzy fractals and Tilings Anne Siegel CANT, 2009 Reminder....

DocID: 1vqsN - View Document

FRACTALS FOR ELECTRONIC APPLICATIONS Maciej J. Ogorzałek Department of Information Technologies Faculty of Physics, Astronomy and Applied Computer Science Jagiellonian University,

DocID: 1vmyF - View Document

International Workshop on Chaos­Fractals Theories and Applications 9th IWCFTA

DocID: 1uIyf - View Document

J. theor. Biol, 47}56 doi:jtbi, available online at http://www.idealibrary.com on Link between Truncated Fractals and Coupled Oscillators in Biological Systems V. PAAR*-, N. PAVIN*

DocID: 1ui2I - View Document

Chaos, Solitons and Fractals–309 www.elsevier.com/locate/chaos Construction of homoclinic and heteroclinic trajectories in mechanical systems with several equilibrium positions Yu.V. Mikhlin *, G.V. Manuc

DocID: 1ugLR - View Document