<--- Back to Details
First PageDocument Content
Complexity classes / Machine learning / Algorithmic information theory / Statistical inference / Descriptive complexity / Kolmogorov complexity / Minimum description length / Complexity / Overfitting / Theoretical computer science / Computational complexity theory / Applied mathematics
Date: 2008-04-09 07:25:48
Complexity classes
Machine learning
Algorithmic information theory
Statistical inference
Descriptive complexity
Kolmogorov complexity
Minimum description length
Complexity
Overfitting
Theoretical computer science
Computational complexity theory
Applied mathematics

Add to Reading List

Source URL: volker.nannen.com

Download Document from Source Website

File Size: 381,37 KB

Share Document on Facebook

Similar Documents

Proofs for “Information Geometry and Minimum Description Length Networks” An Approximation of ln N (B, α) As the value of ln N (B, α) does not depend on the choice of the coordinate system, we abuse notation and v

DocID: 1v69h - View Document

Information Geometry and Minimum Description Length Networks Ke Sun SUNK . EDU @ GMAIL . COM Viper Group, Computer Vision and Multimedia Laboratory, University of Geneva, Switzerland Jun Wang

DocID: 1ulA7 - View Document

When Data Compression and Statistics Disagree Two Frequentist Challenges for the Minimum Description Length Principle Tim van Erven

DocID: 1ujeN - View Document

The 30th Annual Conference of the Japanese Society for Artificial Intelligence, 2016 2E4-OS-12a-3 汎用知能の知識記述長最小化原理仮説の提案 Proposing minimum knowledge description length principle for

DocID: 1tG9F - View Document

MDL4BMF: Minimum Description Length for Boolean Matrix Factorization PAULI MIETTINEN, Max-Planck Institute for Informatics JILLES VREEKEN, Max-Planck Institute for Informatics, Saarland University, University of Antwerp

DocID: 1swYe - View Document