<--- Back to Details
First PageDocument Content
Algebraic combinatorics / Symmetric functions / Representation theory of finite groups / Representation theory / Permutations / Young tableau / Littlewood–Richardson rule / Bender–Knuth involution / Littelmann path model / Abstract algebra / Algebra / Mathematics
Date: 2007-01-02 13:26:40
Algebraic combinatorics
Symmetric functions
Representation theory of finite groups
Representation theory
Permutations
Young tableau
Littlewood–Richardson rule
Bender–Knuth involution
Littelmann path model
Abstract algebra
Algebra
Mathematics

Add to Reading List

Source URL: www.ams.org

Download Document from Source Website

File Size: 72,10 KB

Share Document on Facebook

Similar Documents

Flag Varieties and Interpretations of Young Tableau Algorithms Marc A. A. van Leeuwen Universit´e de Poitiers, D´epartement de Math´ematiques, UFR Sciences SP2MI, T´el´eport 2, BP 30179, 86962 Futuroscope Chasseneui

DocID: 1uRl6 - View Document

Algebraic combinatorics / Representation theory / Symmetric functions / Invariant theory / LittlewoodRichardson rule / Jeu de taquin / Littelmann path model / Young tableau / Picture

An analogue of Jeu de taquin for Littelmann’s crystal paths Marc A. A. van Leeuwen Universit´e de Poitiers, D´epartement de Math´ematiques, 40 Avenue du Recteur Pineau, 86022 Poitiers, France

DocID: 1oH48 - View Document

Algebraic combinatorics / Symmetric functions / Representation theory of finite groups / Algebraic topology / Young tableau / Simplicial complex / Link / Stanley–Reisner ring / Simplex / Abstract algebra / Mathematics / Algebra

TABLEAU COMPLEXES ALLEN KNUTSON, EZRA MILLER, AND ALEXANDER YONG A BSTRACT. Let X, Y be finite sets and T a set of functions from X → Y which we will call “tableaux”. We define a simplicial complex whose facets, al

DocID: 1agpB - View Document

Symmetric functions / Representation theory of finite groups / Algebraic geometry / Young tableau / Grassmannian / Symmetric matrix / W1 / Algebra / Abstract algebra / Geometry

Coxeter-Knuth Graphs and a signed Little Bijection Sara Billey University of Washington http://www.math.washington.edu/∼billey

DocID: 1a5ae - View Document

Symmetric functions / Algebraic geometry / Algebraic combinatorics / Representation theory / Young tableau / Schubert variety / Schubert polynomial / Schur polynomial / Homogeneous polynomial / Abstract algebra / Algebra / Mathematics

FOUR POSITIVE FORMULAE FOR TYPE A QUIVER POLYNOMIALS ALLEN KNUTSON, EZRA MILLER, AND MARK SHIMOZONO Abstract. We give four positive formulae for the (equioriented type A) quiver polynomials of Buch and Fulton [BF99]. All

DocID: 1a2MC - View Document