<--- Back to Details
First PageDocument Content
Algebraic number theory / Number theorists / Ivan Fesenko / Class field theory / Galois theory / Adele ring / Langlands program / Absolute Galois group / Algebraic number field / Abelian / Profinite group / Duality
Date: 2016-08-01 05:49:19
Algebraic number theory
Number theorists
Ivan Fesenko
Class field theory
Galois theory
Adele ring
Langlands program
Absolute Galois group
Algebraic number field
Abelian
Profinite group
Duality

Reciprocity and IUT Ivan Fesenko Ivan Fesenko Reciprocity and IUT

Add to Reading List

Source URL: www.maths.nottingham.ac.uk

Download Document from Source Website

File Size: 364,24 KB

Share Document on Facebook

Similar Documents

GALOIS THEORY AT WORK: CONCRETE EXAMPLES KEITH CONRAD 1. Examples √ √ Example 1.1. The field extension Q( 2, 3)/Q is Galois of degree 4, so its Galois√group

DocID: 1uWWM - View Document

Galois theory for schemes H. W. Lenstra Mathematisch Instituut Universiteit Leiden Postbus 9512, 2300 RA Leiden The Netherlands

DocID: 1uGuK - View Document

Fields and Galois Theory J.S. Milne Version 4.22 March 30, 2011 A more recent version of these notes is available at www.jmilne.org/math/

DocID: 1tRb0 - View Document

The pro-étale fundamental group Wouter Zomervrucht, December 16, Infinite Galois theory We develop an ‘infinite’ version of Grothendieck’s Galois theory. It was introduced first by Noohi [3] and slightly m

DocID: 1t9l4 - View Document

301 Documenta Math. Additive Structure of Multiplicative Subgroups of Fields and Galois Theory

DocID: 1sAX8 - View Document