AdaBoost

Results: 297



#Item
61Ensemble learning / Artificial intelligence / Medicine / Microbiology / Malaria / AdaBoost / Diagnosis of malaria / Recife / University of Pernambuco / Pernambuco / Statistical classification / Plasmodium falciparum

C:/Users/Allisson/Dropbox/Automatic Diagnosis for Malaria/Malaria/Papers By Allisson/PMDADEADLINE 01_04/8phda12-oliveira.dvi

Add to Reading List

Source URL: www2013.wwwconference.org

Language: English - Date: 2014-07-21 08:47:00
62Artificial intelligence / Computer vision / Machine learning / Feature detection / Ensemble learning / Boosting / Constellation model / AdaBoost / Image segmentation / Edge detection / Outline of object recognition / Decision stump

Contour-Based Learning for Object Detection Jamie Shotton Department of Engineering University of Cambridge

Add to Reading List

Source URL: jamie.shotton.org

Language: English - Date: 2013-04-10 20:18:03
63Statistical classification / Artificial intelligence / Learning / Statistics / Machine learning / Support vector machine / Conference on Computer Vision and Pattern Recognition / K-nearest neighbors algorithm / AdaBoost

Two-Class Weather Classification∗ Cewu Lu§ § Di Lin†

Add to Reading List

Source URL: www.cse.cuhk.edu.hk

Language: English - Date: 2014-04-14 11:12:43
64Statistical classification / Electric power / Electromagnetism / Statistics / Learning / Machine learning / Smart meter / Electricity meter / Support vector machine / K-nearest neighbors algorithm / Classifier / AdaBoost

Revealing Household Characteristics from Smart Meter Data Christian Beckela,∗, Leyna Sadamoria , Thorsten Staakeb , Silvia Santinic a Institute for Pervasive Computing, Department of Computer Science, ETH Zurich,

Add to Reading List

Source URL: www.vs.inf.ethz.ch

Language: English - Date: 2014-11-11 08:41:59
65Feature detection / Machine learning / Ensemble learning / Statistical classification / Histogram of oriented gradients / Support vector machine / AdaBoost / Pattern recognition / Classifier / Edge detection / Pedestrian detection

High-Level Fusion of Depth and Intensity for Pedestrian Classification Marcus Rohrbach1,3 , Markus Enzweiler2 and Dariu M. Gavrila1,4 1 Environment Perception, Group Research, Daimler AG, Ulm, Germany

Add to Reading List

Source URL: dl.dropboxusercontent.com

Language: English
66

One coordinate at a time • Adaboost performs gradient descent on exponential loss • Adds one coordinate (“weak learner”) at each iteration. • Weak learning in binary classification = slightly better than random

Add to Reading List

Source URL: seed.ucsd.edu

Language: English - Date: 2011-02-10 16:52:04
    67Computer vision / Artificial intelligence / Ensemble learning / Vision / Feature detection / Pedestrian detection / Surveillance / Catadioptric system / Cascade Framework / Boosting / AdaBoost / Speeded up robust features

    PDF Document

    Add to Reading List

    Source URL: dl.dropboxusercontent.com

    Language: English
    68Computer vision / Learning / AdaBoost / Digital elevation model / Classifier / Boosting / USGS DEM / Statistical classification / LIDAR / Artificial intelligence / Ensemble learning / Machine learning

    Bridge detection in grid terrains and improved drainage enforcement Ryan Carlson Andrew Danner

    Add to Reading List

    Source URL: www.cs.swarthmore.edu

    Language: English - Date: 2010-09-20 18:10:56
    69Graph theory / Ensemble learning / Formal sciences / Statistical models / Belief propagation / Gradient boosting / AdaBoost / Pattern recognition / Bayesian network / Statistics / Graphical models / Machine learning

    Boosted Optimization for Network Classification Timothy Hancock Bioinformatics Center Institute for Chemical Research Kyoto University, Japan

    Add to Reading List

    Source URL: jmlr.csail.mit.edu

    Language: English - Date: 2010-03-31 18:50:22
    70Learning / Machine learning / Ensemble learning / Support vector machine / AdaBoost / Levenshtein distance / Linear classifier / Statistics / Statistical classification / Artificial intelligence

    Domain Adaptation with Good Edit Similarities: a Sparse Way to deal with Scaling and Rotation Problems in Image Classification Amaury Habrard University of Aix-Marseille Laboratoire d’Informatique Fondamentale UMR CNRS

    Add to Reading List

    Source URL: laboratoirehubertcurien.fr

    Language: English - Date: 2011-11-16 02:20:36
    UPDATE