<--- Back to Details
First PageDocument Content
Science / Kolmogorov–Arnold–Moser theorem / Andrey Kolmogorov / Vladimir Arnold / Action-angle coordinates / Jürgen Moser / Kam / Perturbation theory / Integral / Mathematical analysis / Mathematics / Hamiltonian mechanics
Date: 2010-07-19 02:29:29
Science
Kolmogorov–Arnold–Moser theorem
Andrey Kolmogorov
Vladimir Arnold
Action-angle coordinates
Jürgen Moser
Kam
Perturbation theory
Integral
Mathematical analysis
Mathematics
Hamiltonian mechanics

Add to Reading List

Source URL: sadovski.iep.uran.ru

Download Document from Source Website

File Size: 1,77 MB

Share Document on Facebook

Similar Documents

arXiv:1611.06068v1 [hep-lat] 18 NovLU TPNovemberChiral Perturbation Theory at Finite Volume and/or

DocID: 1vddn - View Document

Automated lattice perturbation theory Chris Monahan College of William and Mary/JLab Motivation

DocID: 1uPEq - View Document

Extracting B physics from lattice simulations via lattice perturbation theory

DocID: 1uNLQ - View Document

© CopyrightPerturbation Theory and Celestial Mechanics In this last chapter we shall sketch some aspects of perturbation theory and

DocID: 1uAXL - View Document

Chern-Simons theory The C-S partition function Feynman calculus gives a perturbation expansion of Z near the flat connections in 1/k. The interaction

DocID: 1tzUR - View Document