<--- Back to Details
First PageDocument Content
Abstract algebra / Order theory / Model theory / Field theory / Functions and mappings / Hyperreal number / Ultrafilter / Ultraproduct / Forcing / Mathematics / Non-standard analysis / Mathematical logic
Date: 2004-02-29 16:34:14
Abstract algebra
Order theory
Model theory
Field theory
Functions and mappings
Hyperreal number
Ultrafilter
Ultraproduct
Forcing
Mathematics
Non-standard analysis
Mathematical logic

Add to Reading List

Source URL: shelah.logic.at

Download Document from Source Website

File Size: 145,27 KB

Share Document on Facebook

Similar Documents

CVS: $Id: diary.tex,v18:18:26 david Exp $ :001 Let U be a ultrafilter on Z. Say that a subset A of Z is green (for lack of a better name!) relative to U iff for every k ∈ A the translation A

DocID: 1uEgA - View Document

HINDMAN’S THEOREM VIA ULTRAFILTERS LEO GOLDMAKHER Abstract. A self-contained exposition of the ultrafilter proof of Hindman’s theorem. This proof was explained to me by Mike Pawliuk. 1. Motivation

DocID: 1sUWr - View Document

Mathematics / Order theory / Non-standard analysis / Abstraction / Structure / Ultrafilter / Boolean algebra / Ideal / Ordinal number

Introduction van der Waerden ideal W-ultrafilters

DocID: 1np28 - View Document

Mathematics / Mathematical analysis / Order theory / Non-standard analysis / Abstraction / Ultrafilter / Cofinal / Continuous function / Constructible universe / Riemann surfaces / Complex analysis

Continuous Cofinal Maps on Ultrafilters Natasha Dobrinen University of Denver joint work with Stevo Todorcevic

DocID: 1mYz3 - View Document

Mathematical analysis / Functions and mappings / Elementary mathematics / Decision theory / Utility / Preference / Ultrafilter / Stone–Čech compactification / Measure / Mathematics / Topology / General topology

Topology and Markets Graciela Chichilnisky ` Editor Fields Institute Communications Volume 22, 1999

DocID: 1gbV8 - View Document