<--- Back to Details
First PageDocument Content
Algebraic number theory / Number theorists / Ivan Fesenko / Class field theory / Galois theory / Adele ring / Langlands program / Absolute Galois group / Algebraic number field / Abelian / Profinite group / Duality
Date: 2016-08-01 05:49:19
Algebraic number theory
Number theorists
Ivan Fesenko
Class field theory
Galois theory
Adele ring
Langlands program
Absolute Galois group
Algebraic number field
Abelian
Profinite group
Duality

Reciprocity and IUT Ivan Fesenko Ivan Fesenko Reciprocity and IUT

Add to Reading List

Source URL: www.maths.nottingham.ac.uk

Download Document from Source Website

File Size: 364,24 KB

Share Document on Facebook

Similar Documents

O N PROFINITE GROUPS WITH POLYNOMIALLY BOUNDED M ÖBIUS NUMBERS Andrea Lucchini Università di Padova, Italy ISCHIA GROUP THEORY 2010

DocID: 1uXtk - View Document

THE PROBABILISTIC ZETA FUNCTION OF FINITE AND PROFINITE GROUPS ANDREA LUCCHINI To a finitely generated profinite group G one may associate the numerical sequence an (G) defined by

DocID: 1s18p - View Document

Group theory / Algebra / Abstract algebra / Infinite group theory / Topological groups / Profinite group / Lie groups / Pro-p group / Sylow theorems / Subgroup growth / Frattini subgroup / Index of a subgroup

Profinite groups with NIP theory and p-adic analytic groups Katrin Tent†, Mathematisches Institut, Universit¨at M¨ unster,

DocID: 1rfyI - View Document

Algebra / Abstract algebra / Mathematics / Group theory / Algebraic number theory / Homological algebra / Embedding problem / Field theory / Galois theory / Profinite group / Group cohomology / Cohomology

1467 Documenta Math. Triple Massey Products over Global Fields J ÁN M INÁ Cˇ

DocID: 1r4M5 - View Document

Mathematics / Algebra / Geometry / Group theory / Infinite group theory / Geometric group theory / Topological groups / Profinite group / Betti number / Presentation of a group / Index of a subgroup / Residually finite group

THE FIRST L2 -BETTI NUMBER AND APPROXIMATION IN ARBITRARY CHARACTERISTIC arXiv:1206.0474v3 [math.GR] 24 Feb 2014 ¨

DocID: 1qGz8 - View Document