<--- Back to Details
First PageDocument Content
Geometry / Algebra / Birational geometry / Algebraic surfaces / EnriquesKodaira classification / Automorphism / Cremona group / Meromorphic function / Curve
Date: 2016-05-22 08:24:30
Geometry
Algebra
Birational geometry
Algebraic surfaces
EnriquesKodaira classification
Automorphism
Cremona group
Meromorphic function
Curve

Citations From References: 1 From Reviews: 0 Previous Up

Add to Reading List

Source URL: jgrivaux.perso.math.cnrs.fr

Download Document from Source Website

File Size: 202,15 KB

Share Document on Facebook

Similar Documents

The Cremona group in two variables Serge Cantat∗ Abstract. We survey a few results concerning the Cremona group in two variablesMathematics Subject Classification. 32M05, 37F99.

DocID: 1rN3y - View Document

Algebra / Mathematics / Abstract algebra / Group theory / Finite groups / Projective geometry / Conjugacy class / Lie groups / Covering space / Elliptic curve / Direct product of groups / Sylow theorems

Elements and cyclic subgroups of finite order of the Cremona group J´er´emy Blanc April 12, 2009 Abstract We give the classification of elements – respectively cyclic subgroups –

DocID: 1pSnJ - View Document

Algebraic geometry / General topology / Algebraic varieties / Scheme theory / Algebraic structures / Zariski topology / Kernel / Topological space / Birational geometry / Ring / Ample line bundle / Scheme

TOPOLOGICAL SIMPLICITY OF THE CREMONA GROUPS JÉRÉMY BLANC AND SUSANNA ZIMMERMANN Abstract. The Cremona group is topologically simple when endowed with the Zariski or Euclidean topology, in any dimension ≥ 2 and over

DocID: 1osXF - View Document

Luigi Cremona (1830 – 1903) —I— Basic Features Cremona group in n variables

DocID: 1odGK - View Document

The Cremona Group Serge Cantat ´

DocID: 1o1Cr - View Document