<--- Back to Details
First PageDocument Content
Non-Euclidean geometry / Farkas Bolyai / Nikolai Lobachevsky / Hyperbolic geometry / Hyperbolic space / László Lovász / Constant curvature / András Prékopa / Babeș-Bolyai University / Geometry / Mathematics / János Bolyai
Date: 2011-12-13 04:34:59
Non-Euclidean geometry
Farkas Bolyai
Nikolai Lobachevsky
Hyperbolic geometry
Hyperbolic space
László Lovász
Constant curvature
András Prékopa
Babeș-Bolyai University
Geometry
Mathematics
János Bolyai

PROGRAMME Programme Committee

Add to Reading List

Source URL: www.conferences.hu

Download Document from Source Website

File Size: 541,28 KB

Share Document on Facebook

Similar Documents

MINIMAL AND CONSTANT MEAN CURVATURE SURFACES IN THE THREE-SPHERE: BRENDLE’S PROOF OF THE LAWSON CONJECTURE BEN ANDREWS Minimal surfaces (surfaces of least area) and related objects such as constant mean curvature surfa

DocID: 1vk5I - View Document

Constant scalar curvature metrics on sphere bundles Nobuhiko Otoba (joint with Jimmy Petean) This is the continuation of my previous talk at Oberseminar Globale Analysis last month, though the contents will be logically

DocID: 1t6u1 - View Document

Discrete constant mean curvature surfaces via conserved quantities in any space form Wayne Rossman (joint work with F. Burstall, U. Hertrich-Jeromin, S. Santos) Our purpose here is to present a definition for discrete c

DocID: 1sJvZ - View Document

Uniqueness and non-existence results for spacelike hypersurfaces with constant mean curvature in Hn × R1 Alma L. Albujer September 6∼9, 2011 Email:

DocID: 1rS8r - View Document

Mathematical analysis / Operator theory / Mathematics / Differential geometry of surfaces / Constant-mean-curvature surface / Partial differential equations / Harmonic analysis / Table of stars with Bayer designations / -quadratic form

The space of properly embedded minimal surfaces with finite total curvature Joaqu´ın P´erez∗ Antonio Ros∗

DocID: 1rj0P - View Document