<--- Back to Details
First PageDocument Content
Automated theorem proving / NP-complete problems / Unit propagation / 2-satisfiability / Time complexity / Variable / MAX-3SAT / (SAT /  ε-UNSAT) / Theoretical computer science / Mathematics / Computational complexity theory
Date: 2008-03-02 23:12:13
Automated theorem proving
NP-complete problems
Unit propagation
2-satisfiability
Time complexity
Variable
MAX-3SAT
(SAT
ε-UNSAT)
Theoretical computer science
Mathematics
Computational complexity theory

doi:j.ipl

Add to Reading List

Source URL: www.cc.ntut.edu.tw

Download Document from Source Website

File Size: 126,13 KB

Share Document on Facebook

Similar Documents

Logic gates / XNOR gate / Circuit

Optimizing S-box Implementations for Several Criteria using SAT Solvers Ko Stoffelen Goal

DocID: 1xVCk - View Document

Mathematical logic / Type theory / Computability theory / Lambda calculus / Theoretical computer science / Model theory / Higher-order logic / Constructible universe / Mathematics

Bounded Model Generation for Isabelle/HOL Using a SAT Solver Tjark Weber

DocID: 1xVzf - View Document

Logic gates / Theoretical computer science / Boolean satisfiability problem / XOR gate / XNOR gate / AND gate / Data Encryption Standard / OR gate / Block cipher / Mathematical optimization / Circuit

Optimizing S-box Implementations for Several Criteria using SAT Solvers Ko Stoffelen Radboud University, Digital Security, Nijmegen, The Netherlands

DocID: 1xVyX - View Document

Proof assistants / Theoretical computer science / Logic in computer science / Mathematical logic / Isabelle / Logic for Computable Functions / Mathematics / Resolution / Constructible universe / Theorem prover / LCF / Formal methods

Integrating a SAT Solver with an LCF-style Theorem Prover A Fast Decision Procedure for Propositional Logic for the Isabelle System Tjark Weber

DocID: 1xVu1 - View Document

Constructible universe

Integrating a SAT Solver with Isabelle/HOL Tjark Weber (joint work with Alwen Tiu et al.) First Munich-Nancy Workshop on

DocID: 1xUVp - View Document